ترغب بنشر مسار تعليمي؟ اضغط هنا

Shell Model Description of $^{158}$Gd

271   0   0.0 ( 0 )
 نشر من قبل Gabriela Popa
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English
 تأليف G. Popa




اسأل ChatGPT حول البحث

The pseudo-SU(3) model is used to describe the low-energy spectra as well as $E2$ and $M1$ transition strengths in $^{158}$Gd. The Hamiltonian includes spherical single-particle energies, the quadrupole-quadrupole and proton and neutron pairing interactions, plus four rotor-like terms. The parameters of the Hamiltonian were fixed by systematics with the rotor-like terms determined through a least-squares analysis. The basis states are built as linear combinations of SU(3) states which are the direct product of SU(3) proton and neutron states with pseudo-spin zero. The calculated results compare favorably with the available experimental data, which demonstrates the ability of the model to describe such nuclei.



قيم البحث

اقرأ أيضاً

A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nu clei, produced in fragmentation reactions at GSI and also with ($^3${He},$t$) charge-exchange (CE) reactions corresponding to $T_z = + 1$ to $T_z = 0$ carried out at RCNP-Osaka.The calculations are performed in the $pf$ model space, using the GXPF1a and KB3G effective interactions. Qualitative agreement is obtained for the individual transitions, while the calculated summed transition strengths closely reproduce the observed ones.
72 - F. Brandolini , C. A. Ur 2004
For natural parity states of several odd-A nuclei a comparison of shell model calculations in the full pf configuration space with the Nilsson diagram and particle-rotor predictions shows that prolate strong coupling applies at low excitation energy, revealing multi-quasiparticle rotational bands and, in some cases, bandcrossings. Moreover, ground state bands experience a change from collective to non-collective regime, approaching the termination. Similar features are observed in the even-even nuclei. In the even-even N=Z nuclei evidence of the vibrational gamma-band is found. A review of non-natural parity structures is furthermore presented.
The structure of the neutron-rich carbon nucleus ^{16}C is described by introducing a new microscopic shell model of no-core type. The model space is composed of the 0s, 0p, 1s0d, and 1p0f shells. The effective interaction is microscopically derived from the CD-Bonn potential and the Coulomb force through a unitary transformation theory. Calculated low-lying energy levels of ^{16}C agree well with the experiment. The B(E2;2_{1}^{+} to 0_{1}^{+}) value is calculated with the bare charges. The anomalously hindered B(E2) value for ^{16}C, measured recently, is well reproduced.
Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framew ork that is capable of treating resonant and nonresonant many-body states on equal footing. Purpose: In this work, we construct the minimal complex-energy configuration interaction approach to describe binding energies and spectra of selected 5 $leq$ A $leq$ 11 nuclei. Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid $^4$He core. The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique. Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly known states. A case in point is our prediction for the pair of unbound mirror nuclei $^{10}$Li-$^{10}$N in which a huge Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations. Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-line nuclei.
We present a review of the pseudo-SU(3) shell model and its application to heavy deformed nuclei. The model have been applied to describe the low energy spectra, B(E2) and B(M1) values. A systematic study of each part of the interaction within the Ha miltonian was carried out. The study leads us to a consistent method of choosing the parameters in the model. A systematic application of the model for a sequence of rare earth nuclei demonstrates that an overarching symmetry can be used to predict the onset of deformation as manifested through low-lying collective bands.The scheme utilizes an overarching sp(4,R) algebraic framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا