ﻻ يوجد ملخص باللغة العربية
We show that the quantum uncertainty principle puts some limits on the effectiveness of the antinucleon-nucleus annihilation at very low energies. This is caused by the fact that the realization a very effective short-distance reaction process implies information on the relative distance of the reacting particles. Some quantitative predictions are possible on this ground, including the approximate A-independence of antinucleon-nucleus annihilation rates.
Here a short synthesis is presented of the work, developed in the last two years by the Brescia Collaboration, on the phenomenology of antinucleon-nucleon and antinucleon-nucleus annihilation at small momenta (below 300 MeV/c in the laboratory), with special stress on the role of general principles.
We compare data of antineutron and antiproton annihilation cross sections on different targets at very low energies. After subtracting Coulomb effects, we observe that the ratio between the antineutron proton and antiproton proton annihilation cross
We study effects of the Pauli principle on the potential energy of two-cluster systems. The object of the investigation is the lightest nuclei of p-shell with a dominant $alpha$-cluster channel. For this aim we construct matrix elements of two-cluste
We present a detailed study of a continuum random phase approximation approach to quasielastic electron-nucleus and neutrino-nucleus scattering. The formalism is validated by confronting ($e,e$) cross-section predictions with electron scattering data
[Background] Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. [Purpose] Confront our calculations of charged-curre