ﻻ يوجد ملخص باللغة العربية
A three-center phenomenological model able to explain, at least from a qualitative point of view, the difference in the observed yield of a particle-accompanied fission and that of binary fission was developed. It is derived from the liquid drop model under the assumption that the aligned configuration, with the emitted particle between the light and heavy fragment is obtained by increasing continuously the separation distance, while the radii of the light fragment and of the light particle are kept constant. During the first stage of the deformation one has a two-center evolution until the neck radius becomes equal to the radius of the emitted particle. Then the three center starts developing by decreasing with the same amount the two tip distances. In such a way a second minimum, typical for a cluster molecule, appears in the deformation energy. Examples are presented for $^{240}$Pu parent nucleus emitting $alpha$-particles and $^{14}$C in a ternary process.
We propose a new type of three-cluster equation which uses two-cluster resonating-group-method (RGM) kernels. In this equation, the orthogonality of the total wave-function to two-cluster Pauli-forbidden states is essential to eliminate redundant com
Using many-body perturbation theory and coupled-cluster theory, we calculate the ground-state energy of He-4 and O-16. We perform these calculations using a no-core G-matrix interaction derived from a realistic nucleon-nucleon potential. Our calculat
Three-pion interferometry is investigated for new information on the space-time structure of the pion source created in ultra-relativistic heavy-ion collisions. The two- and three-pion correlations are numerically computed for incoherent source funct
Nuclear electric dipole moments of $^{3}He$ and $^{3}H$ are calculated using Time Reversal Invariance Violating (TRIV) potentials based on the meson exchange theory, as well as the ones derived by using pionless and pionful effective field theories,
We present a study of the skewness of nuclear matter, which is proportional to the third derivative of the energy per nucleon with respect to the baryon density at the saturation point, in the framework of the Landau-Migdal theory. We derive an exact