ﻻ يوجد ملخص باللغة العربية
A test of parity-conserving, time-reversal non-invariance (PC TRNI) has been performed in 5.9 MeV polarized neutron transmission through nuclear spin aligned holmium. The experiment searches for the T-violating five-fold correlation via a double modulation technique - flipping the neutron spin while rotating the alignment axis of the holmium. Relative cross sections for spin-up and spin-down neutrons are found to be equal to within $1.2 times 10^{-5}$ (80% confidence). This is a two order of magnitude improvement compared to traditional detailed balance studies of time reversal, and represents the most precise test of PC TRNI in a dynamical process.
A novel test of time-reversal invariance in proton-deuteron scattering is planned as an internal target transmission experiment at the cooler synchrotron COSY. The P-even, T-odd observable is the polarization correlation $A_{y,xz}$ of the total cross
Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functio
Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton deuteron scattering with proton energies up to $2~$MeV. Distorted Wave Born Approximation is employed to estimate TVPC matrix elements, based on had
We describe an apparatus used to measure the triple-correlation term (D hat{sigma}_ncdot p_etimes p_ u) in the beta-decay of polarized neutrons. The D-coefficient is sensitive to possible violations of time reversal invariance. The detector has an oc
A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms is reported. %57 No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz inva