ﻻ يوجد ملخص باللغة العربية
We present first measurements of the $phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $Omega$ to those of the $phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $Lambda$ baryons, supporting baryon-meson scaling. Since $phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.
The PHENIX experiment has measured $phi$ meson production in $d$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans
We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-pr
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$)
Mid-rapidity Omega and anti-Omega production in Au+Au collisions at RHIC is studied with the STAR experiment. We report preliminary results on yields and spectra at $sqrt{s_{NN}}$ = 130 and 200 GeV. Production relative to negatively charged hadrons (