ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of 9C via resonance scattering of protons on 8B

77   0   0.0 ( 0 )
 نشر من قبل Grigory Rogachev
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure of the neutron-deficient 9C isotope was studied via elastic scattering of radioactive 8B on protons. An excitation function for resonance elastic scattering was measured in the energy range from 0.5 to 3.2 MeV in the center-of-momentum system. A new excited state in 9C was observed at an excitation energy of 3.6 MeV. An R-matrix analysis indicates spin-parity 5/2- for the new state. The results of this experiment are compared with Continuum Shell Model calculations.



قيم البحث

اقرأ أيضاً

The structure of exotic nucleus 10N was studied using 9C+p resonance scattering. Two L=0 resonances were found to be the lowest states in 10N. The ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2- or 1- spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.
The astrophysical factor of the 8B(p,gamma)9C at zero energy, S18(0), is determined from three-body model analysis of 9C breakup processes. The elastic breakup 208Pb(9C,p8B)208Pb at 65 MeV/nucleon and the one-proton removal reaction of 9C at 285 MeV/ nucleon on C and Al targets are calculated with the continuum-discretized coupled-channels method (CDCC) and the eikonal reaction theory (ERT), respectively. The asymptotic normalization coefficient (ANC) of 9C in the p-8B configuration extracted from the two reactions show good consistency, in contrast to in the previous studies. As a result of the present analysis, S18(0) = 66 pm 10 eVb is obtained.
Background: Level structure of the most neutron deficient nucleon-bound carbon isotope, 9C, is not well known. Definitive spin-parity assignments are only available for two excited states. No positive parity states have been conclusively identified s o far and the location of the sd-shell in A=9 T=3/2 isospin quadruplet is not known. Purpose: We have studied the level structure of exotic nucleus 9C at excitation energies below 6.4 MeV. Methods: Excited states in 9C were populated in 8B+p resonance elastic scattering and excitation functions were measured using active target approach. Results: Two excited states in 9C were conclusively observed, and R-matrix analysis of the excitation functions was performed to make the spin-parity assignments. The first positive parity state in A=9 T=3/2 nuclear system, the 5/2+ resonance at 4.3 MeV, has been identified. Conclusions: The new 5/2+ state at 4.3 MeV in 9C is a single-particle L=0 broad resonance and it determines the energy of the 2s shell. The 2s shell in this exotic nucleus appears well within the region dominated by the p-shell states.
We discuss the use of one-nucleon breakup reactions of loosely bound nuclei at intermediate energies as an indirect method in nuclear astrophysics. These are peripheral processes, therefore we can extract asymptotic normalization coefficients (ANC) f rom which reaction rates of astrophysical interest can be inferred. To show the usefulness of the method, three different cases are discussed. In the first, existing experimental data for the breakup of 8B at energies from 30 to 1000 MeV/u and of 9C at 285 MeV/u on light through heavy targets are analyzed. Glauber model calculations in the eikonal approximation and in the optical limit using different effective interactions give consistent, though slightly different results, showing the limits of the precision of the method. The results lead to the astrophysical factor S_17(0)=18.7+/-1.9 eVb for the key reaction for solar neutrino production 7Be(p,gamma)8B. It is consistent with the values from other indirect methods and most direct measurements, but one. Breakup reactions can be measured with radioactive beams as weak as a few particles per second, and therefore can be used for cases where no direct measurements or other indirect methods for nuclear astrophysics can be applied. We discuss a proposed use of the breakup of the proton drip line nucleus 23Al to obtain spectroscopic information and the stellar reaction rate for 22Mg(p,gamma)23Al.
263 - Tokuro Fukui , Kazuyuki Ogata , 2014
The astrophysical factor of $^8$B($p$,$gamma$)$^9$C at zero energy, $S_{18}(0)$, is determined by a three-body coupled-channels analysis of the transfer reaction $^{8}$B($d$,$n$)$^{9}$C at 14.4 MeV/nucleon. Effects of the breakup channels of $d$ and $^9$C are investigated with the continuum-discretized coupled-channels method. It is found that, in the initial and final channels, respectively, the transfer process through the breakup states of $d$ and $^9$C, its interference with that through their ground states in particular, gives a large increase in the transfer cross section. The finite-range effects with respect to the proton-neutron relative coordinate are found to be about 20%. As a result of the present analysis, $S_{18}(0)=22 pm 6~{rm eV~b}$ is obtained, which is smaller than the result of the previous distorted-wave Born approximation analysis by about 51%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا