ترغب بنشر مسار تعليمي؟ اضغط هنا

Alpha-induced cross sections of 106Cd for the astrophysical p-process

84   0   0.0 ( 0 )
 نشر من قبل Gyorgy Gyurky
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The 106Cd(alpha,gamma)110Sn reaction cross section has been measured in the energy range of the Gamow window for the astrophysical p-process scenario. The cross sections for 106Cd(alpha,n)109Sn and for 106Cd(alpha,p)109In below the (alpha,n) threshold have also been determined. The results are compared with predictions of the statistical model code NON-SMOKER using different input parameters. The comparison shows that a discrepancy for 106Cd(alpha,gamma)110Sn when using the standard optical potentials can be removed with a different alpha+106Cd potential. Some astrophysical implications are discussed.



قيم البحث

اقرأ أيضاً

The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % is otopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and $S$ factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.
122 - G. G. Kiss , T. Szucs , T.Rauscher 2014
The cross sections of the 162Er(a,g,)166Yb and 162Er(a,n)165Yb reactions have been measured for the first time. The radiative alpha capture reaction cross section was measured from Ec.m. = 16.09 down to Ec.m. = 11.21 MeV, close to the astrophysically relevant region (which lies between 7.8 and 11.48 MeV at 3 GK stellar temperature). The 162Er(a,n)165Yb reaction was studied above the reaction threshold between Ec.m. = 12.19 and 16.09 MeV. The fact that the 162Er(a,g)166Yb cross sections were measured below the (a,n) threshold at first time in this mass region opens the opportunity to study directly the a-widths required for the determination of astrophysical reaction rates. The data clearly show that compound nucleus formation in this reaction proceeds differently than previously predicted.
201 - A. Ornelas , G. G. Kiss , P. Mohr 2015
Alpha elastic scattering angular distributions of the 106Cd(alpha,alpha)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the alpha + nucleus optical potential parameter sets. Furthermore, the n ew high precision angular distributions, together with the data available from the literature were used to study the energy dependence of the locally optimized {alpha}+nucleus optical potential in a wide energy region ranging from E_Lab = 27.0 MeV down to 16.1 MeV. The potentials under study are a basic prerequisite for the prediction of alpha-induced reaction cross sections and thus, for the calculation of stellar reaction rates used for the astrophysical gamma process. Therefore, statistical model predictions using as input the optical potentials discussed in the present work are compared to the available 106Cd + alpha cross section data.
As a continuation of a systematic study of reactions relevant to the astrophysical p process, the cross sections of the 74,76Se(p,gamma)75,77Br and 82Se(p,n)82Br reactions have been measured at energies from 1.3 to 3.6 MeV using an activation techniq ue. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the NON-SMOKER and MOST codes. The sensitivity of the calculations to variations in the optical proton potential and the nuclear level density was studied. Good agreement between theoretical and experimental reaction rates was found for the reactions 74Se(p,gamma)75Br and 82Se(p,n)82Br.
The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerator s of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا