ﻻ يوجد ملخص باللغة العربية
The odd-odd fp-shell nucleus 52Sc was investigated using in-beam gamma-ray spectroscopy following secondary fragmentation of a 55V and 57Cr cocktail beam. Aside from the known gamma-ray transition at 674(5)keV, a new decay at E_gamma=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of 52Sc irrespective of the choice of the effective interaction. In addition, the frequency of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.
Excited states in the 158Eu nucleus have been determined with the 160Gd(d, alpha)158Eu reaction, studied at an incident energy of 18.0 MeV with the Munich tandem and the Q3D spectrograph. More than 50 excited states have been determined up to 1.6 MeV
High spin states in the odd-odd N=Z nucleus 46V have been identified. At low spin, the T=1 isobaric analogue states of 46Ti are established up to I = 6+. Other high spin states, including the band terminating state, are tentatively assigned to the sa
Electron Capture (EC) decay of $^{146}$Gd($it{t_{1/2}}$ = 48d) to the low lying states of $^{146}$Eu has been studied using high-resolution $gamma$ ray spectroscopy. The $^{146}$Gd activity was produced by ($alpha$, 2n) reaction at E$_{alpha}$ = 32 M
The present work reported a conclusive evidence for anti-magnetic rotational (AMR) band in an odd-odd nucleus 142Eu. Parity of the states of a quadrupole sequence in 142Eu was firmly identified from polarization measurements using the Indian National
Atomic masses of seven $T_z=-1$, $fp$-shell nuclei from $^{44}$V to $^{56}$Cu and two low-lying isomers, $^{44m}$V ($J^pi=6^+$) and $^{52m}$Co ($J^pi=2^+$), have been measured with relative precisions of $1-4times 10^{-7}$ with Isochronous Mass Spect