ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

127   0   0.0 ( 0 )
 نشر من قبل Douglas Leonard
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe $Omega_b$ with a precision of about 4%. With $Omega_b$ tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.



قيم البحث

اقرأ أيضاً

The cross sections of nuclear reactions between the radioisotope $^7$Be and deuterium, a possible mechanism of reducing the production of mass-7 nuclides in Big-Bang nucleosynthesis, were measured at center-of-mass energies between 0.2 MeV and 1.5 Me V. The measured cross sections are dominated by the $(d,alpha)$ reaction channel, towards which prior experiments were mostly insensitive. A new resonance at 0.36(5)~MeV with a strength of $omegagamma$ = 1.7(5)~keV was observed inside the relevant Gamow window. Calculations of nucleosynthesis outcomes based on the experimental cross section show that the resonance reduces the predicted abundance of primordial $^7$Li, but not sufficiently to solve the primordial lithium problem.
67 - Moshe Gai 2019
Rijal, et al. in their recent publication [Phys. Rev. Lett {bf 122}, 182701 (2019), arXiv:1808.07893], on Measurement of d + $^7$Be Cross Sections for Big-Bang Nucleosynthesis (BBN), misrepresent their result, they misrepresent previous work of Parke r (72) and of Caughlan and Fowler (88), and quite possibly, contradicts the very BBN theory that has been established over the last few decades. This comment is intended to correct these misrepresentations and critically review their claims on BBN.
Among the reactions involved in the production and destruction of deuterium during Big Bang Nucleosynthesis, the deuterium-burning D(p,gamma)3He reaction has the largest uncertainty and limits the precision of theoretical estimates of primordial deut erium abundance. Here we report the results of a careful commissioning of the experimental setup used to measure the cross-section of the D(p,gamma)3He reaction at the Laboratory for Underground Nuclear Astrophysics of the Gran Sasso Laboratory (Italy). The commissioning was aimed at minimising all sources of systematic uncertainty in the measured cross sections. The overall systematic error achieved (< 3 %) will enable improved predictions of BBN deuterium abundance.
We have performed high precision measurements of the zero-energy neutron scattering amplitudes of gas phase molecular hydrogen, deuterium, and $^{3}$He using neutron interferometry. We find $b_{mathit{np}}=(-3.7384 pm 0.0020)$ fmcite{Schoen03}, $b_{m athit{nd}}=(6.6649 pm 0.0040)$ fmcite{Black03,Schoen03}, and $b_{n^{3}textrm{He}} = (5.8572 pm 0.0072)$ fmcite{Huffman04}. When combined with the previous world data, properly corrected for small multiple scattering, radiative corrections, and local field effects from the theory of neutron optics and combined by the prescriptions of the Particle Data Group, the zero-energy scattering amplitudes are: $b_{mathit{np}}=(-3.7389 pm 0.0010)$ fm, $b_{mathit{nd}}=(6.6683 pm 0.0030)$ fm, and $b_{n^{3}textrm{He}} = (5.853 pm .007)$ fm. The precision of these measurements is now high enough to severely constrain NN few-body models. The n-d and n-$^{3}$He coherent neutron scattering amplitudes are both now in disagreement with the best current theories. The new values can be used as input for precision calculations of few body processes. This precision data is sensitive to small effects such as nuclear three-body forces, charge-symmetry breaking in the strong interaction, and residual electromagnetic effects not yet fully included in current models.
The WMAP satellite, devoted to the observations of the anisotropies of the Cosmic Microwave Background (CMB) radiation, has recently provided a determination of the baryonic density of the Universe with unprecedented precision. Using this, Big Bang N ucleosynthesis (BBN) calculations predict a primordial 7Li abundance which is a factor 2-3 higher than that observed in galactic halo dwarf stars. It has been argued that this discrepancy could be resolved if the 7Be(d,p)2alpha reaction rate is around a factor of 100 larger than has previously been considered. We have now studied this reaction, for the first time at energies appropriate to the Big Bang environment, at the CYCLONE radioactive beam facility at Louvain-la-Neuve. The cross section was found to be a factor of 10 smaller than derived from earlier measurements. It is concluded therefore that nuclear uncertainties cannot explain the discrepancy between observed and predicted primordial 7Li abundances, and an alternative astrophysical solution must be investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا