ﻻ يوجد ملخص باللغة العربية
Measured hard photon multiplicities from second-chance nucleon-nucleon collisions are used in combination with a kinetic thermal model, to estimate the break-up times of excited nuclear systems produced in nucleus-nucleus reactions at intermediate energies. The obtained nuclear break-up time for the $^{129}${Xe} + $^{nat}${Sn} reaction at 50{it A} MeV is $Delta$$tau$ $approx$ 100 -- 300 fm/$c$ for all reaction centralities. The lifetime of the radiating sources produced in seven other different heavy-ion reactions studied by the TAPS experiment are consistent with $Delta$$tau$ $approx$ 100 fm/$c$, such relatively long thermal photon emission times do not support the interpretation of nuclear breakup as due to a fast spinodal process for the heavy nuclear systems studied.
Experimental data from the reaction of an 8.0 GeV/c pi- beam incident on a 197Au target have been analyzed in order to investigate the integrated breakup time scale for hot residues. Alpha-particle energy spectra and particle angular distributions su
A novel method was developed for the extraction of short emission times of light particles from the projectile-like fragments in peripheral deep-inelastic collisions in the Fermi energy domain. We have taken an advantage of the fact that in the exter
The relative angle correlation of intermediate mass fragments has been studied for p+Au collisions at 3.6 GeV. Strong suppression at small angles is observed caused by IMF-IMF Coulomb repulsion. Experimental correlation function is compared to that o
Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution i
We exploit the many-body self-consistent Greens function method to analyze finite-temperature properties of infinite nuclear matter and to explore the behavior of the thermal index used to simulate thermal effects in equations of state for astrophysi