Some highlights from the 18$^{rm th}$ international conference on $B$ physics at frontier machines are presented, including first results from the full LHC Run 2 data and from early Belle II data.
In these proceedings, we highlight recent developments from both theory and experiment related to the global description of matter produced in ultra-relativistic heavy-ion collisions as presented during the Quark Matter 2012 conference.
The committee for the study of the extension of the Hadron Experimental Facility was formed under the Hadron Hall Users Association in August, 2015. This document is a summary of the discussions among the committee members, and documented by a part of the members listed below.
Angular momentum (AM) is a key parameter to understand galaxy formation and evolution. AM originates in tidal torques between proto-structures at turn around, and from this the specific AM is expected to scale as a power-law of slope 2/3 with mass. H
owever, subsequent evolution re-shuffles this through matter accretion from filaments, mergers, star formation and feedback, secular evolution and AM exchange between baryons and dark matter. Outer parts of galaxies are essential to study since they retain most of the AM and the diagnostics of the evolution. Galaxy IFU surveys have recently provided a wealth of kinematical information in the local universe. In the future, we can expect more statistics in the outer parts, and evolution at high z, including atomic gas with SKA.