ﻻ يوجد ملخص باللغة العربية
Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer. Absolute calibration was made by parallel measurements of Coulomb scattering of muons. Parameters of a pion-nucleus optical potential were obtained from fits to all eight angular distributions put together. The `anomalous s-wave repulsion known from pionic atoms is clearly observed and could be removed by introducing a chiral-motivated density dependence of the isovector scattering amplitude, which also greatly improved the fits to the data. The empirical energy dependence of the isoscalar amplitude also improves the fits to the data but, contrary to what is found with pionic atoms, on its own is incapable of removing the anomaly.
Differential cross sections for elastic scattering of 21.5 MeV positive and negative pions by Si, Ca, Ni and Zr have been measured as part of a study of the pion-nucleus potential across threshold. The `anomalous repulsion in the s-wave term was obse
We calculate formation spectra of eta-nucleus systems in (pi,N) reactions with nuclear targets, which can be performed at existing and/or forthcoming facilities, including J-PARC, in order to investigate eta-nucleus interactions. Based on the N^*(153
We have measured the elastic-scattering ratios of normalized yields for charged pions from 3H and 3He in the backward hemisphere. At 180 MeV, we completed the angular distribution begun with our earlier measurements, adding six data points in the ang
We present a theoretical formalism for scattering of the twisted neutrons by nuclei in a kinematic regime where interference between Coulomb interaction and the strong interaction is essential. Twisted neutrons have definite quantized values of an an
We perform an expansion of the virtual Compton scattering amplitude for low energies and low momenta and show that this expansion covers the transition from the regime to be investigated in the scheduled photon electroproduction experiments to the re