Distribution of the parallel momentum of $^{28}$Si fragments from the breakup of 30.7 MeV/nucleon $^{29}$P has been measured on C targets. The distribution has the FWHM with the value of 110.5 $pm$ 23.5 MeV/c which is consistent quantitatively with Galuber model calculation assuming by a valence proton in $^{29}$P. The density distribution is also predicted by Skyrme-Hartree-Fock calculation. Results show that there might exist the proton-skin structure in $^{29}$P.
The possible occurence of highly deformed configurations is investigated in the $^{40}$Ca and $^{56}$Ni di-nuclear systems as formed in the $^{28}$Si+$^{12}$C,$^{28}$Si reactions by using the properties of emitted light charged particles. Inclusive a
s well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the {sc ICARE} charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large $^{8}$Be cluster emission of a binary nature.
The parallel momentum distribution (PMD) of the residual nuclei of the 14O(p,pn)13O and 14O(p,2p)13N reactions at 100 and 200 MeV/nucleon in inverse kinematics is investigated with the framework of the distorted wave impulse approximation. The PMD sh
ows an asymmetric shape characterized by a steep fall-off on the high momentum side and a long-ranged tail on the low momentum side. The former is found to be due to the phase volume effect reflecting the energy and momentum conservation, and the latter is to the momentum shift of the outgoing two nucleons inside an attractive potential caused by the residual nucleus. Dependence of these effects on the nucleon separation energy of the projectile and the incident energy is also discussed.
Background: Neutron transfer measurements for the $^{18}$O + $^{28}$Si system have shown that the experimental one-neutron and two-neutron transfer cross sections are well reproduced with spectroscopic amplitudes from two different shell model intera
ctions for the Si isotopes: textit{psdmod} for the two-neutron transfer, and textit{psdmwkpn} for the one-neutron transfer. Purpose: The origin of this ambiguity can be related to a more complex mechanism in the one-neutron transfer that requires the unpairing of neutrons prior to its transfer in the ($^{18}$O,$^{17}$O) reaction. Studying a nucleus where this characteristic is absent ($^{13}$C) should help to elucidate this question. Method: One-neutron transfer cross sections were measured for the $^{13}$C + $^{28}$Si at E$_{lab}$ = 30, and 34 MeV, and compared with coupled reaction channel calculations using spectroscopic amplitudes derived from the textit{psdmod} and textit{psdmwkpn} shell model interactions. Results: The spectroscopic amplitudes from the textit{psdmod} interaction for the relevant states in $^{29}$Si provide a good description of the experimental data and the corresponding values agree with previous estimates obtained from the (d,p) reaction. Conclusions: The experimental data for the one-neutron transfer to $^{28}$Si induced by ($^{13}$C,$^{12}$C) reaction is well reproduced using spectroscopic amplitudes from the textit{psdmod}.
A detailed investigation on the relative isotopic distributions has been carried out for the first time in case of even-even correlated fission fragments for the $^{235}$U($n_{th}$,$f$) fission reaction. High-statistics data were obtained in a prompt
$gamma$ ray spectroscopy measurement during the EXILL campaign at ILL, Grenoble, France. The extensive off-line analysis of the coincidence data have been carried out using four different coincidence methods. Combining the results from 2-dimensional $gamma-gamma$ and 3-dimensional $gamma-gamma-gamma$ coincidence analysis, a comprehensive picture of the relative isotopic yield distributions of the even-even neutron-rich fission fragments has emerged. The experimentally observed results have been substantiated by the theoretical calculations based on a novel approach of isospin conservation, and a reasonable agreement has been obtained. The calculations following the semi-empirical GEF model have also been carried out. The results from the GEF model calculations are found to be in fair agreement with the experimental results.
A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Ad
ditionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin etc..) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source.