ﻻ يوجد ملخص باللغة العربية
The muLan experiment at the Paul Scherrer Institute will measure the lifetime of the positive muon with a precision of 1 ppm, giving a value for the Fermi coupling constant G_F at the level of 0.5 ppm. Meanwhile, by measuring the observed lifetime of the negative muon in pure hydrogen, the muCap experiment will determine the rate of muon capture, giving the protons pseudoscalar coupling g_p to 7%. This coupling can be calculated precisely from heavy baryon chiral perturbation theory and therefore permits a test of QCDs chiral symmetry.
We survey a new generation of precision muon lifetime experiments. The goal of the MuCap experiment is a determination of the rate for muon capture on the free proton to 1 percent, from which the induced pseudoscalar form factor $g_P$ of the nucleon
By measuring the lifetime of the negative muon in pure protium (hydrogen-1), the MuCap experiment determines the rate of muon capture on the proton, from which the protons pseudoscalar coupling g_p may be inferred. A precision of 15% for g_p has been
The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure
The singlet capture rate $Lambda_S$ for the semileptonic weak process $mu+p to n+ u_mu$ has been measured in the MuCap experiment. The novel experimental technique is based on stopping muons in an active target, consisting of a time projection chambe
The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, w