ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of charged particle emission sources and coalescence in E/A = 61 MeV $^{36}$Ar + $^{27}$Al, $^{112}$Sn and $^{124}$Sn collisions

56   0   0.0 ( 0 )
 نشر من قبل Roberta Ghetti
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-particle kinetic energy spectra and two-particle small angle correlations of protons ($p$), deuterons ($d$) and tritons ($t$) have been measured simultaneously in 61A MeV $^{36}$Ar + $^{27}$Al, $^{112}$Sn and $^{124}$Sn collisions. Characteristics of the emission sources have been derived from a ``source identification plot ($beta_{source}$--$E_{CM}$ plot), constructed from the single-particle invariant spectra, and compared to the complementary results from two-particle correlation functions. Furthermore, the source identification plot has been used to determine the conditions when the coalescence mechanism can be applied for composite particles. In our data, this is the case only for the Ar + Al reaction, where $p$, $d$ and $t$ are found to originate from a common source of emission (from the overlap region between target and projectile). In this case, the coalescence model parameter, $tilde{p}_0$ -- the radius of the complex particle emission source in momentum space, has been analyzed.



قيم البحث

اقرأ أيضاً

We analyze the production cross sections and isotopic distributions of projectile-like residues in the reactions $^{112}$Sn + $^{112}$Sn and $^{124}$Sn + $^{124}$Sn at an incident beam energy of 1 GeV/nucleon measured with the FRS fragment separator at the GSI laboratory. Calculations within the statistical multifragmentation model (SMM) for an ensemble of excited sources were performed with ensemble parameters determined previously for similar reactions at 600 MeV/nucleon. The obtained good agreement with the experiment establishes the universal properties of the excited spectator systems produced during the dynamical stage of the reaction. It is furthermore confirmed that a significant reduction of the symmetry-energy term at the freeze-out stage of reduced density and high temperature is necessary to reproduce the experimental isotope distributions. A trend of decreasing symmetry energy for large neutron-rich fragments of low excitation energy is interpreted as a nuclear-structure effect.
125 - Z.Y. Sun , M.B. Tsang , W.G. Lynch 2010
Equilibration and equilibration rates have been measured by colliding Sn nuclei with different isospin asymmetries at beam energies of E/A=35 MeV. Using the yields of mirror nuclei of 7Li and 7Be, we have studied the diffusion of isospin asymmetry by combining data from asymmetric 112Sn+124Sn and 124Sn+112Sn collisions with that from symmetric 112Sn+112Sn and 124Sn+124Sn collisions. We use these measurements to probe isospin equilibration in central collisions where nucleon-nucleon collisions are strongly blocked by the Pauli exclusion principal. The results are consistent with transport theoretical calculations that predict a degree of transparency in these collisions, but inconsistent with the emission of intermediate mass fragments by a single chemically equilibrated source. Comparisons with ImQMD calculations are consistent with results obtained at higher incident energies that provide constraints on the density dependence of the symmetry energy.
We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at mid-rapidity in semi-peripheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show la rger values of $<$N/Z$>$ isospin asymmetry, stronger angular anisotropies and reduced odd-even staggering effects in neutron to proton ratio $<$N/Z$>$ distributions than those produced in sequential statistical emission. All these effects support the concept of isospin migration, that is sensitive to the density gradient between participant and quasi-spectator nuclear matter, in the so called neck fragmentation mechanism. By comparing the data to a Stochastic Mean Field (SMF) simulation we show that this method gives valuable constraints on the symmetry energy term of nuclear equation of state at subsaturation densities. An indication emerges for a linear density dependence of the symmetry energy.
515 - T. Li , U. Garg , Y. Liu 2007
We have investigated the isoscalar giant monopole resonance (GMR) in the Sn isotopes, using inelastic scattering of 400-MeV $alpha$-particles at extremely forward angles, including 0 deg. A value of -550 pm 100 MeV has been obtained for the asymmetry term, $K_tau$, in the nuclear incompressibility.
292 - T. Li , U. Garg , Y. Liu 2007
The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112--124) with inelastic scattering of 400-MeV $alpha$ particles in the angular range $0^circ$--$8.5^circ$. We find that the experiment ally-observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in $^{208}$Pb and $^{90}$Zr very well. From the GMR data, a value of $K_{tau} = -550 pm 100$ MeV is obtained for the asymmetry-term in the nuclear incompressibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا