ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalously hindered E2 strength B(E2;2_1^+ -> 0^+) in 16C

388   0   0.0 ( 0 )
 نشر من قبل Nobuaki Imai
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The electric quadrupole transition from the first 2+ state to the ground 0+ state in 16C is studied through measurement of the lifetime by a recoil shadow method applied to inelastically scattered radioactive 16C nuclei. The measured lifetime is 75 +- 23 ps, corresponding to a B(E2;2_1+ -> 0^+) value of 0.63 +- 0.19 e2fm4, or 0.26 +- 0.08 Weisskopf units. The transition strength is found to be anomalously small compared to the empirically predicted value.



قيم البحث

اقرأ أيضاً

The large reported $E2$ strength between the $2^+$ ground state and $1^+$ first excited state of $^8$Li, $B(E2; 2^+ rightarrow 1^+)= 55(15)$ e$^2$fm$^4$, presents a puzzle. Unlike in neighboring $A=7-9$ isotopes, where enhanced $E2$ strengths may be understood to arise from deformation as rotational in-band transitions, the $2^+rightarrow1^+$ transition in $^8$Li cannot be understood in any simple way as a rotational in-band transition. Moreover, the reported strength exceeds textit{ab initio} predictions by an order of magnitude. In light of this discrepancy, we revisited the Coulomb excitation measurement of this strength, now using particle-$gamma$ coincidences, yielding a revised $B(E2; 2^+ rightarrow 1^+)$ of $25(8)(3)$ e$^2$fm$^4$. We explore how this value compares to what might be expected in rotational, Elliott SU(3), and textit{ab initio} descriptions, including no-core shell model (NCSM) calculations with various internucleon interactions. While the present value is a factor of $2$ smaller than previously reported, it remains anomalously enhanced.
The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-en ergy Coulomb excitation are compared to their respective adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values obtained with a variety of standard methods. Intermediate-energy Coulomb excitation is found to have an accuracy comparable to those of long-established experimental techniques.
The lifetimes of the $2^+_1$, the $2^+_2$ and the $3^-_1$ states of $^{210}$Po have been measured in the $^{208}$Pb($^{12}$C,$^{10}$Be)$^{210}$Po transfer reaction by the Doppler-shift attenuation method. The results for the lifetime of the $2^+_1$ s tate is about three times shorter than the adopted value. However, the new value still does not allow for consistent description of the properties of the yrast $2^+_1$, $4^+_1$, $6^+_1$, and $8^+_1$ states of $^{210}$Po in the framework of nuclear shell models. The Quasi-particle Phonon Model (QPM) calculations also cannot overcome this problem thus indicating the existence of a peculiarity which is neglected in both theoretical approaches.
Background: The B(E2) transition strength to the 2+_2 state in 94Zr was initially reported to be larger by a factor of 1.63 than the one to the 2+_1 state from lifetime measurements with the Doppler-shift attenuation method (DSAM) using the (n,ngamma ) reaction [E. Elhami et al., Phys. Rev. C 75, 011301(R) (2007)]. This surprising behavior was recently revised in a new measurement by the same group using the same experimental technique leading to a ratio below unity as expected in vibrational nuclei. Purpose: The goal is an independent determination of the ratio of B(E2) strengths for the transitions to the 2+_(1,2) states of 94Zr with inelastic electron scattering. Method: The relative population of the 2+_(1,2) states in (e,e) reactions was measured at the SDALINAC in a momentum transfer range q = 0.17 - 0.51 fm^(-1) and analyzed in plane-wave Born approximation with the method described in A. Scheikh Obeid et al., Phys. Rev. C 87, 014337 (2013). Results: The extracted B(E2) strength ratio of 0.789(43) between the excitation of the 2+_1 and 2+_2 states of 94Zr is consistent with but more precise than the latest (n,ngamma) experiment. Using the B(E2) transition strength to the first excited state from the literature a value of 3.9(9) W.u. is deduced for the B(E2; 2+_2 -> 0+_1) transition. Conclusions: The electron scattering result independently confirms the latest interpretation of the different (n,ngamma) results for the transition to the 2+_2 state in 94Zr.
The reduced transition probability B(E2) of the first excited 2+ state in the nucleus 104Sn was measured via Coulomb excitation in inverse kinematics at intermediate energies. A value of 0.163(26) e^2b^2 was extracted from the absolute cross-section on a Pb target, while the method itself was verified with the stable 112Sn isotope. Our result deviates significantly from the earlier reported value of 0.10(4) e^2b^2 and corresponds to a moderate decrease of excitation strength relative to the almost constant values observed in the proton-rich, even-A 106-114Sn isotopes. Present state-of-the-art shell-model predictions, which include proton and neutron excitations across the N=Z=50 shell closures as well as standard polarization charges, underestimate the experimental findings
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا