ﻻ يوجد ملخص باللغة العربية
Proton elliptic flow is studied as a function of impact-parameter $b$, for two transverse momentum cuts in 2 - 6 AGeV Au + Au collisions. The elliptic flow shows an essentially linear dependence on b (for $1.5 < b < 8$ fm) with a negative slope at 2 AGeV, a positive slope at 6 AGeV and a near zero slope at 4 AGeV. These dependencies serve as an important constraint for discriminating between various equations of state (EOS) for high density nuclear matter, and they provide important insights on the interplay between collision geometry and the expansion dynamics. Extensive comparisons of the measured and calculated differential flows provide further evidence for a softening of the EOS between 2 and 6 GeV/nucleon.
Directed flow measurements for $Lambda$-hyperons are presented and compared to those for protons produced in the same Au+Au collisions (2, 4, and 6 AGeV; $b < 5 - 6$ fm). The measurements indicate that $Lambda$-hyperons flow consistently in the same
We have measured the sideward flow of neutral strange ($K^0_s$) mesons in 6 AGeV Au + Au collisions. A prominent anti-flow signal is observed for an impact parameter range (b $lesssim 7$ fm) which spans central and mid-central events. Since the $K^0_
Rapidity distributions of protons from central $^{197}$Au + $^{197}$Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model
Source images are extracted from two-particle correlations constructed from strange and non-strange hadrons produced in 6 AGeV Au + Au collisions. Very different source images result from pp vs p$Lambda$ vs $pi^-pi^-$ correlations. These observations
We present first results on event-by-event elliptic flow fluctuations in nucleus-nucleus collisions corrected for effects of non-flow correlations where the magnitude of non-flow correlations has been independently measured in data. Over the measured