ترغب بنشر مسار تعليمي؟ اضغط هنا

The focal plane proton-polarimeter for the 3-spectrometer setup at MAMI

114   0   0.0 ( 0 )
 نشر من قبل Hartmut Schmieden
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For experiments of the type A(vec e,evec p) the 3-spectrometer setup of the A1 collaboration at MAMI has been supplemented by a focal plane proton-polarimeter. To this end, a carbon analyzer of variable thickness and two double-planes of horizontal drift chambers have been added to the standard detector system of Spectrometer A. Due to the spin precession in the spectrometer magnets, all three polarization components at the target can be measured simultaneously. The performance of the polarimeter has been studied using elastic p(e,ep) scattering.



قيم البحث

اقرأ أيضاً

284 - Patrick Achenbach 2011
An instrument of central importance for the strangeness photo- and electroproduction at the 1.5-GeV electron beam of the MAMI accelerator at the Institut fur Kernphysik in Mainz, Germany, is the newly installed magnetic spectrometer Kaos that is oper ated by the A1 collaboration in $(e,eK)$ reactions on the proton or light nuclei. Its compact design and its capability to detect negative and positive charged particles simultaneously complements the existing spectrometers. The strangeness program performed with Kaos in 2008-9 is addressing some important issues in the field of elementary kaon photo- and electroproduction reactions. Although recent measurements have been performed at Jefferson Lab, there are still a number of open problems in the interpretation of the data and the description of the elementary process using phenomenological models. With the identification of $Lambda$ and $Sigma^0$ hyperons in the missing mass spectra from kaon production off a liquid hydrogen target it is demonstrated that the extended facility at MAMI is capable to perform strangeness electroproduction spectroscopy at low momentum transfers $Q^2$ < 0.5 (GeV/c)$^2$. The covered kinematics and systematic uncertainties in the cross-section extraction from the data are discussed.
298 - V.Sokhoyan , S.Prakhov , A.Fix 2018
The data available from the A2 Collaboration at MAMI were analyzed to select the $gamma pto pi^0eta p$ reaction on an event-by-event basis, which allows for partial-wave analyses of three-body final states to obtain more reliable results, compared to fits to measured distributions. These data provide the worlds best statistical accuracy in the energy range from threshold to $E_{gamma}=1.45$ GeV, allowing a finer energy binning in the measurement of all observables needed for understanding the reaction dynamics. The results obtained for the measured observables are compared to existing models, and the impact from the new data is checked by the fit with the revised Mainz model.
We report on a comprehensive reinterpretation of the existing cross-section data for elastic electron-proton scattering obtained by the initial-state radiation technique, resulting in a significantly improved accuracy of the extracted proton charge r adius. By refining the external energy corrections we have achieved an outstanding description of the radiative tail, essential for a detailed investigation of the proton finite-size effects on the measured cross-sections. This development, together with a novel framework for determining the radius, based on a regression analysis of the cross-sections employing a polynomial model for the form factor, led us to a new value for the charge radius, which is $(0.870 pm 0.014_mathrm{stat.}pm 0.024_mathrm{sys.} pm 0.003_mathrm{mod.}),mathrm{fm}$.
104 - Patrick Achenbach 2008
In February 2007, the fourth stage of the Mainz Microtron, MAMI-C, started operations with a first experiment. The new Harmonic Double-Sided Microtron delivers an electron beam with energies up to 1.5 GeV while preserving the excellent beam quality o f the previous stages. The experimental program at MAMI is focused on studies of the hadron structure in the domain of non-perturbative QCD. In this paper, a few prominent selections of the extensive physics program at MAMI-C will be presented.
In this work we present an active Compton scattering polarimeter as a focal plane instrument able to extend the X-ray polarimetry towards hard X-rays. Other authors have already studied various instrument design by means of Monte Carlo simulations, i n this work we will show for the first time the experimental measurements of tagging efficiency aimed to evaluate the polarimeter sensitivity as a function of energy. We performed a characterization of different scattering materials by measuring the tagging efficiency that was used as an input to the Monte Carlo simulation. Then we calculated the sensitivity to polarization of a design based on the laboratory set-up. Despite the geometry tested is not optimized for a realistic focal plane instrument, we demonstrated the feasibility of polarimetry with a low energy threshold of 20 keV. Moreover we evaluated a Minimum Detectable Polarization of 10% for a 10 mCrab source in 100 ks between 20 and 80 keV in the focal plane of one multilayer optics module of NuSTAR. The configuration used consisted of a doped p-terphenyl scatterer 3 cm long and 0.7 cm of diameter coupled with a 0.2 cm thick LaBr3 absorber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا