ﻻ يوجد ملخص باللغة العربية
High spin states of the nucleus 104Cd have been studied using the Gammapshere array. The level scheme for 104Cd has been revised and evidence for a structure consisting of magnetic dipole transitions is presented. Shell model calculations, published previously, are invoked to support an interpretation of this structure as an incpient case of magnetic rotation where the transversal magnetic dipole moment is not strong enough to break the signature symmetry.
Inelastic proton scattering experiments were performed at the Research Center for Nuclear Physics, Osaka, with a 295 MeV beam covering laboratory angles 0{deg}-6{deg} and excitation energies 6-22 MeV. Cross sections due to E1 and M1 excitations were
The low-lying $M1$-strength of the open-shell nucleus $^{50}$Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV, using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton
High-spin states in $^{84}$Rb are studied by using the $^{70}$Zn($^{18}$O, p3n)$^{84}$Rb reaction at beam energy of 75 MeV. Three high-lying negative-parity bands are established, whose level spacings are very regular, i.e., there dont exist signatur
The ground state magnetic moment of 35K has been measured using the technique of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K nuclei were produced following the reaction of a 36Ar primary beam of energy 150 MeV/nucleon inci
The nucleus is one of the most multi-faceted many-body systems in the universe. It exhibits a multitude of responses depending on the way one probes it. With increasing technical advancements of beams at the various accelerators and of detection syst