ﻻ يوجد ملخص باللغة العربية
It is pointed out that the higher-order symmetries of the Camassa-Holm (CH) equation are nonlocal and nonlocality poses problems to obtain higher-order conserved densities for this integrable equation (J. Phys. A: Math. Gen. 2005, {bf 38} 869-880). This difficulty is circumvented by defining a nolinear hierarchy for the CH equation and an explicit expression is constructed for the nth-order conserved density.
In the present paper, we investigate some geometrical properties of the Camass-Holm equation (CHE). We establish the geometrical equivalence between the CHE and the M-CIV equation using a link with the motion of curves. We also show that these two equations are gauge equivalent each to other.
The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with self-consistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon
An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of $N$-soliton solutions of the continuous an
In this paper, we study the generalized Heisenberg ferromagnet equation, namely, the M-CVI equation. This equation is integrable. The integrable motion of the space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan