ﻻ يوجد ملخص باللغة العربية
We consider a model where a population of diffusively coupled limit-cycle oscillators, described by the complex Ginzburg-Landau equation, interacts nonlocally via an inertial field. For sufficiently high intensity of nonlocal inertial coupling, the system exhibits birhythmicity with two oscillation modes at largely different frequencies. Stability of uniform oscillations in the birhythmic region is analyzed by means of the phase dynamics approximation. Numerical simulations show that, depending on its parameters, the system has irregular intermittent regimes with local bursts of synchronization or desynchronization.
Spiral and antispiral waves are studied numerically in two examples of oscillatory reaction-diffusion media and analytically in the corresponding complex Ginzburg-Landau equation (CGLE). We argue that both these structures are sources of waves in osc
We discuss synchronization in networks of neuronal oscillators which are interconnected via diffusive coupling, i.e. linearly coupled via gap junctions. In particular, we present sufficient conditions for synchronization in these networks using the t
We show that subsets of interacting oscillators may synchronize in different ways within a single network. This diversity of synchronization patterns is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in s
The multi-peak solitons and their stability are investigated for the nonlocal nonlinear system with the sine-oscillation response, including both the cases of positive and negative Kerr coefficients. The Hermite-Gaussian-type multi-peak solitons and
We study the influence of a linear nonlocal spatial coupling on the interaction of fronts connecting two equivalent stable states in the prototypical 1-D real Ginzburg-Landau equation. While for local coupling the fronts are always monotonic and ther