We address the occurrence of narrow planetary rings under the interaction with shepherds. Our approach is based on a Hamiltonian framework of non-interacting particles where open motion (escape) takes place, and includes the quasi-periodic perturbations of the shepherds Kepler motion with small and zero eccentricity. We concentrate in the phase-space structure and establish connections with properties like the eccentricity, sharp edges and narrowness of the ring. Within our scattering approach, the organizing centers necessary for the occurrence of the rings are stable periodic orbits, or more generally, stable tori. In the case of eccentric motion of the shepherd, the rings are narrower and display a gap which defines different components of the ring.