ﻻ يوجد ملخص باللغة العربية
I analyse a model of an evolving network represented as a directed graph; each node corresponds to one molecular species and the links to catalytic interactions between species. Over short timescales the graph remains fixed while relative populations of the molecular species change according to a set of coupled differential equations. Over long timescales the system is subject to periodic perturbations, each of which adds one new node to the graph, with random links to other nodes, and removes one node with the least relative population. Starting from a sparse random graph, a small autocatalytic set (ACS) inevitably forms and then grows by accreting nodes until it spans the entire graph. The resultant fully autocatalytic graph, whose probability of forming by pure chance is very small, nevertheless forms in this model in an average time that grows only logarithmically with the size of the system. ACSs can also get destroyed, often accompanied by the sudden extinction of a large number of species. I show that the largest of the extinction events in this model are caused by one of three mechanisms, each of which produces a specific discontinuous change in the graphs topology. The model is analytically tractable: two theorems are proved which determine the set of nodes with least relative population in the attractor, for any given graph. This in turn can be used to analytically demonstrate the inevitability of the formation and growth of ACSs and calculate the associated timescales. Finally, I show that the formation and growth of ACSs is robust to the relaxation of many of the idealizations made to enhance the analytical tractability of the model.
Complex evolving systems such as the biosphere, ecosystems and societies exhibit sudden collapses, for reasons that are only partially understood. Here we study this phenomenon using a mathematical model of a system that evolves under Darwinian selec
In this paper, the synchronization in a hyper-network of coupled dynamical systems is investigated for the first time. An evolving hyper-network model is proposed for better describing some complex systems. A concept of joint degree is introduced, an
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative
Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can
We describe a simple adaptive network of coupled chaotic maps. The network reaches a stationary state (frozen topology) for all values of the coupling parameter, although the dynamics of the maps at the nodes of the network can be non-trivial. The st