ﻻ يوجد ملخص باللغة العربية
Bifurcations of classical orbits introduce divergences into semiclassical spectra which have to be smoothed with the help of uniform approximations. We develop a technique to extract individual energy levels from semiclassical spectra involving uniform approximations. As a prototype example, the method is shown to yield excellent results for photo-absorption spectra for the hydrogen atom in an electric field in a spectral range where the abundance of bifurcations would render the standard closed-orbit formula without uniform approximations useless. Our method immediately applies to semiclassical trace formulae as well as closed-orbit theory and offers a general technique for the semiclassical quantization of arbitrary systems.
Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity,
With increasing energy the diamagnetic hydrogen atom undergoes a transition from regular to chaotic classical dynamics, and the closed orbits pass through various cascades of bifurcations. Closed orbit theory allows for the semiclassical calculation
The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is extended to atoms in crossed electric and magnetic fields. We then present a semiclassical quantization of the hydrogen atom in crossed fields, which su
We discuss the fluctuation properties of diagonal matrix elements in the semiclassical limit in chaotic systems. For extended observables, covering a phase space area of many times Plancks constant, both classical and quantal distributions are Gaussi
We show that the eigenvalues of the first order partial differential equation derived by quasi-classical approximation of the Schrodinger equation can be computed from the trace of a classical operator. The derived trace formula is different from the Gutzwiller trace formula.