ﻻ يوجد ملخص باللغة العربية
We analyze the Eckhaus instability of plane waves in the one-dimensional complex Ginzburg-Landau equation (CGLE) and describe the nonlinear effects arising in the Eckhaus unstable regime. Modulated amplitude waves (MAWs) are quasi-periodic solutions of the CGLE that emerge near the Eckhaus instability of plane waves and cease to exist due to saddle-node bifurcations (SN). These MAWs can be characterized by their average phase gradient $ u$ and by the spatial period P of the periodic amplitude modulation. A numerical bifurcation analysis reveals the existence and stability properties of MAWs with arbitrary $ u$ and P. MAWs are found to be stable for large enough $ u$ and intermediate values of P. For different parameter values they are unstable to splitting and attractive interaction between subsequent extrema of the amplitude. Defects form from perturbed plane waves for parameter values above the SN of the corresponding MAWs. The break-down of phase chaos with average phase gradient $ u$ > 0 (``wound-up phase chaos) is thus related to these SNs. A lower bound for the break-down of wound-up phase chaos is given by the necessary presence of SNs and an upper bound by the absence of the splitting instability of MAWs.
The mechanism for transitions from phase to defect chaos in the one-dimensional complex Ginzburg-Landau equation (CGLE) is presented. We introduce and describe periodic coherent structures of the CGLE, called Modulated Amplitude Waves (MAWs). MAWs of
The transition from phase chaos to defect chaos in the complex Ginzburg-Landau equation (CGLE) is related to saddle-node bifurcations of modulated amplitude waves (MAWs). First, the spatial period P of MAWs is shown to be limited by a maximum P_SN wh
Do nonlinear waves destroy Anderson localization? Computational and experimental studies yield subdiffusive nonequilibrium wave packet spreading. Chaotic dynamics and phase decoherence assumptions are used for explaining the data. We perform a quanti
We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves. We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading of wave packets [EPL {bf 91}, 3
We study the chaotic behavior of multidimensional Hamiltonian systems in the presence of nonlinearity and disorder. It is known that any localized initial excitation in a large enough linear disordered system spreads for a finite amount of time and t