ﻻ يوجد ملخص باللغة العربية
The problem of front propagation in a stirred medium is addressed in the case of cellular flows in three different regimes: slow reaction, fast reaction and geometrical optics limit. It is well known that a consequence of stirring is the enhancement of front speed with respect to the non-stirred case. By means of numerical simulations and theoretical arguments we describe the behavior of front speed as a function of the stirring intensity, $U$. For slow reaction, the front propagates with a speed proportional to $U^{1/4}$, conversely for fast reaction the front speed is proportional to $U^{3/4}$. In the geometrical optics limit, the front speed asymptotically behaves as $U/ln U$.
The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-
Front propagation in two dimensional steady and unsteady cellular flows is investigated in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case, by means of a simplified model, we provide an analy
We demonstrate that nonlocal coupling strongly influences the dynamics of fronts connecting two equivalent states. In two prototype models we observe a large amplification in the interaction strength between two opposite fronts increasing front veloc
The Refined Kolmogorov Similarity Hypothesis is a valuable tool for the description of intermittency in isotropic conditions. For flows in presence of a substantial mean shear, the nature of intermittency changes since the process of energy transfer
We study a swimming undulating sheet in the isotropic phase of an active nematic liquid crystal. Activity changes the effective shear viscosity, reducing it to zero at a critical value of activity. Expanding in the sheet amplitude, we find that the c