Double scaling and intermittency in shear dominated flows


الملخص بالإنكليزية

The Refined Kolmogorov Similarity Hypothesis is a valuable tool for the description of intermittency in isotropic conditions. For flows in presence of a substantial mean shear, the nature of intermittency changes since the process of energy transfer is affected by the turbulent kinetic energy production associated with the Reynolds stresses. In these conditions a new form of refined similarity law has been found able to describe the increased level of intermittency which characterizes shear dominated flows. Ideally a length scale associated with the mean shear separates the two ranges, i.e. the classical Kolmogorov-like inertial range, below, and the shear dominated range, above. However, the data analyzed in previous papers correspond to conditions where the two scaling regimes can only be observed individually. In the present letter we give evidence of the coexistence of the two regimes and support the conjecture that the statistical properties of the dissipation field are practically insensible to the mean shear. This allows for a theoretical prediction of the scaling exponents of structure functions in the shear dominated range based on the known intermittency corrections for isotropic flows. The prediction is found to closely match the available numerical and experimental data.

تحميل البحث