ترغب بنشر مسار تعليمي؟ اضغط هنا

On the specialization to the asymptotic cone

61   0   0.0 ( 0 )
 نشر من قبل Mikhail Grinberg
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English
 تأليف Mikhail Grinberg




اسأل ChatGPT حول البحث

Let X be a smooth, connected, closed subvariety of a complex vector space V. The asymptotic cone as(X) is naturally equipped with a nearby cycles sheaf P coming from the specialization of X to as(X). We show that if X is transverse to infinity in a suitable sense, then the Fourier transform of P is an intersection homology sheaf.



قيم البحث

اقرأ أيضاً

Enhanced ind-sheaves provide a suitable framework for the irregular Riemann-Hilbert correspondence. In this paper, we show how Satos specialization and microlocalization functors have a natural enhancement, and discuss some of their properties.
145 - Simone Marchesi 2019
In this work we study line arrangements consisting in lines passing through three non aligned points. We call them triangular arrangements. We prove that any combinatorics of a triangular arrangement is always realized by a Roots-of-Unity-Arrangement , which is a particular class of triangular arrangements. Among these Roots-of Unity-Arrangements we characterize the free ones and show that Teraos conjecture holds for this family. Finally, we give two triangular arrangements having the same weak combinatorics, such that one is free but the other one is not.
We determine five extremal effective rays of the four-dimensional cone of effective surfaces on the toroidal compactification $overline{mathcal A}_3$ of the moduli space ${mathcal A}_3$ of complex principally polarized abelian threefolds, and we conj ecture that the cone of effective surfaces is generated by these surfaces. As the surfaces we define can be defined in any genus $gge 3$, we further conjecture that they generate the cone of effective surfaces on the perfect cone toroidal compactification of ${mathcal A}_g$ for any $gge 3$.
We obtain geometric models for the infinite loop spaces of the motivic spectra $mathrm{MGL}$, $mathrm{MSL}$, and $mathbf{1}$ over a field. They are motivically equivalent to $mathbb{Z}times mathrm{Hilb}_infty^mathrm{lci}(mathbb{A}^infty)^+$, $mathbb{ Z}times mathrm{Hilb}_infty^mathrm{or}(mathbb{A}^infty)^+$, and $mathbb{Z}times mathrm{Hilb}_infty^mathrm{fr}(mathbb{A}^infty)^+$, respectively, where $mathrm{Hilb}_d^mathrm{lci}(mathbb{A}^n)$ (resp. $mathrm{Hilb}_d^mathrm{or}(mathbb{A}^n)$, $mathrm{Hilb}_d^mathrm{fr}(mathbb{A}^n)$) is the Hilbert scheme of lci points (resp. oriented points, framed points) of degree $d$ in $mathbb{A}^n$, and $+$ is Quillens plus construction. Moreover, we show that the plus construction is redundant in positive characteristic.
129 - Masaki Kameko 2014
We give non-torsion counterexamples against the integral Tate conjecture for finite fields. We extend the result due to Pirutka and Yagita for prime numbers 2,3,5 to all prime numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا