ﻻ يوجد ملخص باللغة العربية
Let X be a smooth, connected, closed subvariety of a complex vector space V. The asymptotic cone as(X) is naturally equipped with a nearby cycles sheaf P coming from the specialization of X to as(X). We show that if X is transverse to infinity in a suitable sense, then the Fourier transform of P is an intersection homology sheaf.
Enhanced ind-sheaves provide a suitable framework for the irregular Riemann-Hilbert correspondence. In this paper, we show how Satos specialization and microlocalization functors have a natural enhancement, and discuss some of their properties.
In this work we study line arrangements consisting in lines passing through three non aligned points. We call them triangular arrangements. We prove that any combinatorics of a triangular arrangement is always realized by a Roots-of-Unity-Arrangement
We determine five extremal effective rays of the four-dimensional cone of effective surfaces on the toroidal compactification $overline{mathcal A}_3$ of the moduli space ${mathcal A}_3$ of complex principally polarized abelian threefolds, and we conj
We obtain geometric models for the infinite loop spaces of the motivic spectra $mathrm{MGL}$, $mathrm{MSL}$, and $mathbf{1}$ over a field. They are motivically equivalent to $mathbb{Z}times mathrm{Hilb}_infty^mathrm{lci}(mathbb{A}^infty)^+$, $mathbb{
We give non-torsion counterexamples against the integral Tate conjecture for finite fields. We extend the result due to Pirutka and Yagita for prime numbers 2,3,5 to all prime numbers.