ﻻ يوجد ملخص باللغة العربية
Let 0<n^*< omega and f:X-> n^*+1 be a function where X subseteq omega backslash (n^*+1) is infinite. Consider the following set S_f= {x subset aleph_omega : |x| <= aleph_{n^*} & (for all n in X)cf(x cap alpha_n)= aleph_{f(n)}}. The question, first posed by Baumgartner, is whether S_f is stationary in [alpha_omega]^{< aleph_{n^*+1}}. By a standard result, the above question can also be rephrased as certain transfer property. Namely, S_f is stationary iff for any structure A=< aleph_omega, ... > theres a B prec A such that |B|= aleph_{n^*} and for all n in X we have cf(B cap aleph_n)= aleph_{f(n)}. In this paper, we are going to prove a few results concerning the above question.
We discuss a system of strengthenings of $aleph_omega$ is Jonsson indexed by real numbers, and identify a strongest one. We give a proof of a theorem of Silver and show that there is a barrier to weakening its hypothesis.
In [FHK13], the authors considered the question whether model-existence of $L_{omega_1,omega}$-sentences is absolute for transitive models of ZFC, in the sense that if $V subseteq W$ are transitive models of ZFC with the same ordinals, $varphiin V$ a
When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to all
We study the saturation properties of several classes of $C^*$-algebras. Saturation has been shown by Farah and Hart to unify the proofs of several properties of coronas of $sigma$-unital $C^*$-algebras; we extend their results by showing that some c
In several classes of countable structures it is known that every hyperarithmetic structure has a computable presentation up to bi-embeddability. In this article we investigate the complexity of embeddings between bi-embeddable structures in two such