Minimality properties of Tsirelson type spaces


الملخص بالإنكليزية

In this paper, we study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis (e_k) is said to be subsequentially minimal if for every normalized block basis (x_k) of (e_k), there is a further block (y_k) of (x_k) such that (y_k) is equivalent to a subsequence of (e_k). Sufficient conditions are given for a partly modified mixed Tsirelson space to be subsequentially minimal and connections with Bourgains ell^{1}-index are established. It is also shown that a large class of mixed Tsirelson spaces fails to be subsequentially minimal in a strong sense.

تحميل البحث