ﻻ يوجد ملخص باللغة العربية
The mild sufficient conditions for exponential ergodicity of a Markov process, defined as the solution to SDE with a jump noise, are given. These conditions include three principal claims: recurrence condition R, topological irreducibility condition S and non-degeneracy condition N, the latter formulated in the terms of a certain random subspace of Re^m, associated with the initial equation. The examples are given, showing that, in general, none of three principal claims can be removed without losing ergodicity of the process. The key point in the approach, developed in the paper, is that the local Doeblin condition can be derived from N and S via the stratification method and criterium for the convergence in variations of the family of induced measures on Re^m.
By refining a recent result of Xie and Zhang, we prove the exponential ergodicity under a weighted variation norm for singular SDEs with drift containing a local integrable term and a coercive term. This result is then extended to singular reflecting
In this paper we prove the existence of strong solutions to a SDE with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters H<1/2. Here the generalized drift is given as the local time of the unknown
This work develops asymptotic properties of a class of switching jump diffusion processes. The processes under consideration may be viewed as a number of jump diffusion processes modulated by a random switching mechanism. The underlying processes fea
We prove the unique weak solvability of time-inhomogeneous stochastic differential equations with additive noises and drifts in critical Lebsgue space $L^q([0,T]; L^{p}(mathbb{R}^d))$ with $d/p+2/q=1$. The weak uniqueness is obtained by solving corre
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bo