ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving Fermat-type equations $x^4 + d y^2 = z^p$ via modular Q-curves over polyquadratic fields

65   0   0.0 ( 0 )
 نشر من قبل Luis Dieulefait
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve the diophantine equations x^4 + d y^2 = z^p for d=2 and d=3 and any prime p>349 and p>131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermats Last Theorem, and by Ellenberg in the solution of the equation x^4 + y^2 = z^p, and we use Q-curves, modular forms and inner twists. In principle our method can be applied to solve this type of equations for other values of d.



قيم البحث

اقرأ أيضاً

Ramanujan in his second notebook recorded total of seven $P$--$Q$ modular equations involving theta--function $f(-q)$ with moduli of orders 1, 3, 5 and 15. In this paper, modular equations analogous to those recorded by Ramanujan are obtained involvi ng his theta--functions $varphi(q)$ and $psi(-q)$ with moduli of orders 1, 3, 5 and 15. As a consequence, several values of quotients of theta--function and a continued fraction of order 12 are explicitly evaluated.
In his second notebook, Ramanujan recorded total of 23 P-Q modular equations involving theta-functions $f(-q)$, $varphi(q)$ and $psi(q)$. In this paper, modular equations analogous to those recorded by Ramanujan are obtained involving $f(-q)$. As a c onsequence, values of certain quotients of theta-function are evaluated.
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $Q(sqrt{5})$. In those examples, w e identify Hilbert-Siegel eigenforms that are possible lifts from Hilbert eigenforms.
135 - Angelos Koutsianas 2017
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences and the development of an algorithmic method of proving the non-existence of integer solutions of the equation $f(x)=a^b$, where $f(x)inmathbb Z[x]$, $a$ a positive integer and $b$ an arbitrary positive integer.
Let F be a function field in one variable over a p-adic field and D a central division algebra over F of degree n coprime to p. We prove that Suslin invariant detects whether an element in F is a reduced norm. This leads to a local-global principle f or reduced norms with respect to all discrete valuations of F.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا