ﻻ يوجد ملخص باللغة العربية
We solve the diophantine equations x^4 + d y^2 = z^p for d=2 and d=3 and any prime p>349 and p>131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermats Last Theorem, and by Ellenberg in the solution of the equation x^4 + y^2 = z^p, and we use Q-curves, modular forms and inner twists. In principle our method can be applied to solve this type of equations for other values of d.
Ramanujan in his second notebook recorded total of seven $P$--$Q$ modular equations involving theta--function $f(-q)$ with moduli of orders 1, 3, 5 and 15. In this paper, modular equations analogous to those recorded by Ramanujan are obtained involvi
In his second notebook, Ramanujan recorded total of 23 P-Q modular equations involving theta-functions $f(-q)$, $varphi(q)$ and $psi(q)$. In this paper, modular equations analogous to those recorded by Ramanujan are obtained involving $f(-q)$. As a c
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $Q(sqrt{5})$. In those examples, w
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences
Let F be a function field in one variable over a p-adic field and D a central division algebra over F of degree n coprime to p. We prove that Suslin invariant detects whether an element in F is a reduced norm. This leads to a local-global principle f