ﻻ يوجد ملخص باللغة العربية
What remains of a geometrical notion like that of a principal bundle when the base space is not a manifold but a coarse graining of it, like the poset formed by a base for the topology ordered under inclusion? Motivated by finding a geometrical framework for developing gauge theories in algebraic quantum field theory, we give, in the present paper, a first answer to this question. The notions of transition function, connection form and curvature form find a nice description in terms of cohomology, in general non-Abelian, of a poset with values in a group $G$. Interpreting a 1--cocycle as a principal bundle, a connection turns out to be a 1--cochain associated in a suitable way with this 1--cocycle; the curvature of a connection turns out to be its 2--coboundary. We show the existence of nonflat connections, and relate flat connections to homomorphisms of the fundamental group of the poset into $G$. We discuss holonomy and prove an analogue of the Ambrose-Singer theorem.
In algebraic quantum field theory the spacetime manifold is replaced by a suitable base for its topology ordered under inclusion. We explain how certain topological invariants of the manifold can be computed in terms of the base poset. We develop a t
Polyhedral products were defined by Bahri, Bendersky, Cohen and Gitler, to be spaces obtained as unions of certain product spaces indexed by the simplices of an abstract simplicial complex. In this paper we give a very general homotopy theoretic cons
We compute the homotopy type of the moduli space of flat, unitary connections over aspherical surfaces, after stabilizing with respect to the rank of the underlying bundle. Over the orientable surface M^g, we show that this space has the homotopy typ
A quasitoric manifold is a smooth manifold with a locally standard torus action for which the orbit space is identified with a simple polytope. For a class of topological spaces, the class is called strongly cohomologically rigid if any isomorphism o
The concept of generalised (in the sense of Colombeau) connection on a principal fibre bundle is introduced. This definition is then used to extend results concerning the geometry of principal fibre bundles to those that only have a generalised conne