ﻻ يوجد ملخص باللغة العربية
We suggest two nonparametric approaches, based on kernel methods and orthogonal series to estimating regression functions in the presence of instrumental variables. For the first time in this class of problems, we derive optimal convergence rates, and show that they are attained by particular estimators. In the presence of instrumental variables the relation that identifies the regression function also defines an ill-posed inverse problem, the ``difficulty of which depends on eigenvalues of a certain integral operator which is determined by the joint density of endogenous and instrumental variables. We delineate the role played by problem difficulty in determining both the optimal convergence rate and the appropriate choice of smoothing parameter.
This was a revision of arXiv:1105.2454v1 from 2012. It considers a variation on the STIV estimator where, instead of one conic constraint, there are as many conic constraints as moments (instruments) allowing to use more directly moderate deviations
In this paper we obtain an adjusted version of the likelihood ratio test for errors-in-variables multivariate linear regression models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, wh
In this paper we propose a new test for the hypothesis of a constant coefficient of variation in the common nonparametric regression model. The test is based on an estimate of the $L^2$-distance between the square of the regression function and varia
This paper presents a simple method for carrying out inference in a wide variety of possibly nonlinear IV models under weak assumptions. The method is non-asymptotic in the sense that it provides a finite sample bound on the difference between the tr
We consider the nonparametric estimation of the density function of weakly and strongly dependent processes with noisy observations. We show that in the ordinary smooth case the optimal bandwidth choice can be influenced by long range dependence, as