ترغب بنشر مسار تعليمي؟ اضغط هنا

Homological Integral of Hopf Algebras

297   0   0.0 ( 0 )
 نشر من قبل Quanshui Wu
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The left and right homological integrals are introduced for a large class of infinite dimensional Hopf algebras. Using the homological integrals we prove a version of Maschkes theorem for infinite dimensional Hopf algebras. The generalization of Maschkes theorem and homological integrals are the keys to study noetherian regular Hopf algebras of Gelfand-Kirillov dimension one.



قيم البحث

اقرأ أيضاً

Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide new solutions of quantum Yang-Baxter equation and lead to a construction of a new family of endo-functors of the category of $H_{bf q}(W)$-modules. Hecke-Hopf algebras for the symmetric group are related to Fomin-Kirillov algebras, for an arbitrary Coxeter group $W$ the Demazure part of ${bf H}(W)$ is being acted upon by generalized braided derivatives which generate the corresponding (generalized) Nichols algebra.
192 - Yi-Lin Cheng , Siu-Hung Ng 2010
In this paper, we prove that a non-semisimple Hopf algebra H of dimension 4p with p an odd prime over an algebraically closed field of characteristic zero is pointed provided H contains more than two group-like elements. In particular, we prove that non-semisimple Hopf algebras of dimensions 20, 28 and 44 are pointed or their duals are pointed, and this completes the classification of Hopf algebras in these dimensions.
Let H be a non-semisimple Hopf algebra of dimension 2p^2 over an algebraically closed field of characteristic zero, where p is an odd prime. We prove that H or H^* is pointed, which completes the classification for Hopf algebras of these dimensions.
In this work we define partial (co)actions on multiplier Hopf algebras, we also present examples and properties. From a partial comodule coalgebra we construct a partial smash coproduct generalizing the constructions made by the L. Delvaux, E. Batista and J. Vercruysse.
We introduce a new filtration on Hopf algebras, the standard filtration, generalizing the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated by the coradical. We give a structure theorem: any Hopf algebra wi th injective antipode is a deformation of the bosonization of the Hopf coradical by its diagram, a connected graded Hopf algebra in the category of Yetter-Drinfeld modules over the latter. We discuss the steps needed to classify Hopf algebras in suitable classes accordingly. For the class of co-Frobenius Hopf algebras, we prove that a Hopf algebra is co-Frobenius if and only if its Hopf coradical is so and the diagram is finite dimensional. We also prove that the standard filtration of such Hopf algebras is finite. Finally, we show that extensions of co-Frobenius (resp. cosemisimple) Hopf algebras are co-Frobenius (resp. cosemisimple).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا