Let D(G) be the smallest quantifier depth of a first order formula which is true for a graph G but false for any other non-isomorphic graph. This can be viewed as a measure for the first order descriptive complexity of G. We will show that almost surely D(G)=Theta(ln n/lnln n), where G is a random tree of order n or the giant component of a random graph G(n,c/n) with constant c>1. These results rely on computing the maximum of D(T) for a tree T of order n and maximum degree l, so we study this problem as well.