ﻻ يوجد ملخص باللغة العربية
We consider a small SO(2)-equivariant perturbation of a reaction-diffusion system on the sphere, which is equivariant with respect to the group SO(3) of all rigid rotations. We consider a normally hyperbolic SO(3)-group orbit of a rotating wave on the sphere that persists to a normally hyperbolic SO(2)-invariant manifold $M(epsilon)$. We investigate the effects of this forced symmetry breaking by studying the perturbed dynamics induced on $M(epsilon)$ by the above reaction-diffusion system. We prove that depending on the frequency vectors of the rotating waves that form the relative equilibrium SO(3)u_{0}, these rotating waves will give SO(2)-orbits of rotating waves or SO(2)-orbits of modulated rotating waves (if some transversality conditions hold). The orbital stability of these solutions is established as well. Our main tools are the orbit space reduction, Poincare map and implicit function theorem.
We propose a sliding surface for systems on the Lie group $SO(3)times mathbb{R}^3$ . The sliding surface is shown to be a Lie subgroup. The reduced-order dynamics along the sliding subgroup have an almost globally asymptotically stable equilibrium. T
A generalized Gross-Pitaevskii equation adapted to the $U(5)supset SO(5)supset SO(3)$ symmetry has been derived and solved for the spin-2 condensates. The spin-textile and the degeneracy of the ground state (g.s.) together with the factors affecting
{em Riemannian cubics} are curves in a manifold $M$ that satisfy a variational condition appropriate for interpolation problems. When $M$ is the rotation group SO(3), Riemannian cubics are track-summands of {em Riemannian cubic splines}, used for mot
In this paper we generalize the work of Lin, Lunin and Maldacena on the classification of 1/2-BPS M-theory solutions to a specific class of 1/4-BPS configurations. We are interested in the solutions of 11 dimensional supergravity with $SO(3)times SO(
Tuning interactions in the spin singlet and quintet channels of two colliding atoms could change the symmetry of the one-dimensional spin-3/2 fermionic systems of ultracold atoms while preserving the integrability. Here we find a novel $SO(4)$ symmet