ﻻ يوجد ملخص باللغة العربية
In this paper two independent and unitarily invariant projection matrices P(N) and Q(N) are considered and the large deviation is proven for the eigenvalue density of all polynomials of them as the matrix size $N$ converges to infinity. The result is formulated on the tracial state space $TS({cal A})$ of the universal $C^*$-algebra ${cal A}$ generated by two selfadjoint projections. The random pair $(P(N),Q(N))$ determines a random tracial state $tau_N in TS({cal A})$ and $tau_N$ satisfies the large deviation. The rate function is in close connection with Voiculescus free entropy defined for pairs of projections.
We show that the limit laws of random matrices, whose entries are conditionally independent operator valued random variables having equal second moments proportional to the size of the matrices, are operator valued semicircular laws. Furthermore, we
In this paper, we consider the addition of two matrices in generic position, namely A + U BU * , where U is drawn under the Haar measure on the unitary or the orthogonal group. We show that, under mild conditions on the empirical spectral measures of
We show that the partial transposes of complex Wishart random matrices are asymptotically free. We also investigate regimes where the number of blocks is fixed but the size of the blocks increases. This gives a example where the partial transpose pro
In this note, we study large deviations of the number $mathbf{N}$ of intercalates ($2times2$ combinatorial subsquares which are themselves Latin squares) in a random $ntimes n$ Latin square. In particular, for constant $delta>0$ we prove that $Pr(mat
This paper presents a novel approach to characterize the dynamics of the limit spectrum of large random matrices. This approach is based upon the notion we call spectral dominance. In particular, we show that the limit spectral measure can be determi