ﻻ يوجد ملخص باللغة العربية
We give a basis for the space V spanned by the lowest degree part hat{s}_lambda of the expansion of the Schur symmetric functions s_lambda in terms of power sums, where we define the degree of the power sum p_i to be 1. In particular, the dimension of the subspace V_n spanned by those hat{s}_lambda for which lambda is a partition of n is equal to the number of partitions of n whose parts differ by at least 2. We also show that a symmetric function closely related to hat{s}_lambda has the same coefficients when expanded in terms of power sums or augmented monomial symmetric functions. Proofs are based on the theory of minimal border strip decompositions of Young diagrams.
We prove Stanleys conjecture that, if delta_n is the staircase shape, then the skew Schur functions s_{delta_n / mu} are non-negative sums of Schur P-functions. We prove that the coefficients in this sum count certain fillings of shifted shapes. In p
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch
Cylindric skew Schur functions, a generalization of skew Schur functions, are closely related to the famous problem finding a combinatorial formula for the 3-point Gromov-Witten invariants of Grassmannian. In this paper, we prove cylindric Schur posi
We apply down operators in the affine nilCoxeter algebra to yield explicit combinatorial expansions for certain families of non-commutative k-Schur functions. This yields a combinatorial interpretation for a new family of k-Littlewood-Richardson coefficients.
We introduce the Schur class of functions, discrete analytic on the integer lattice in the complex plane. As a special case, we derive the explicit form of discrete analytic Blaschke factors and solve the related basic interpolation problem.