ﻻ يوجد ملخص باللغة العربية
We introduce a general notion of twistorial map and classify twistorial harmonic morphisms with one-dimensional fibres from self-dual four-manifolds. Such maps can be characterised as those which pull back Abelian monopoles to self-dual connections. In fact, the constructions involve solving a generalised monopole equation, and also the Beltrami fields equation of hydrodynamics, and lead to constructions of self-dual metrics.
We prove that, from an Einstein manifold of dimension greater than or equal to five, there are just two types of harmonic morphism with one-dimensional fibres. This generalizes a result of R.L. Bryant who obtained the same conclusion under the assumption that the domain has constant curvature.
We characterise the actions, by holomorphic isometries on a Kahler manifold with zero first Betti number, of an abelian Lie group of dimgeq 2, for which the moment map is horizontally weakly conformal (with respect to some Euclidean structure on the
On four-dimensional closed manifolds we introduce a class of canonical Riemannian metrics, that we call weak harmonic Weyl metrics, defined as critical points in the conformal class of a quadratic functional involving the norm of the divergence of th
For a homotopically energy-minimizing map $u: N^3to S^1$ on a compact, oriented $3$-manifold $N$ with boundary, we establish an identity relating the average Euler characteristic of the level sets $u^{-1}{theta}$ to the scalar curvature of $N$ and th
In this paper, we prove that the deformed Riemannian extension of any affine Szabo manifold is a Szabo pseudo-Riemannian metric and vice-versa. We proved that the Ricci tensor of an affine surface is skew-symmetric and nonzero everywhere if and only