ﻻ يوجد ملخص باللغة العربية
The authors use steepest descent ideas to obtain a priori $L^p$ estimates for solutions of Riemann-Hilbert Problems. Such estimates play a crucial role, in particular, in analyzing the long-time behavior of solutions of the perturbed nonlinear Schrodinger equation on the line.
We prove a number of textit{a priori} estimates for weak solutions of elliptic equations or systems with vertically independent coefficients in the upper-half space. These estimates are designed towards applications to boundary value problems of Diri
In limited data computerized tomography, the 2D or 3D problem can be reduced to a family of 1D problems using the differentiated backprojection (DBP) method. Each 1D problem consists of recovering a compactly supported function $f in L^2(mathcal F)$,
In this paper, we apply blow-up analysis and Liouville type theorems to study pointwise a priori estimates for some quasilinear equations with p-Laplace operator. We first obtain pointwise interior estimates for the gradient of p-harmonic function, i
The aim of the article is to prove $L^{p}-L^{q}$ off-diagonal estimates and $L^{p}-L^{q}$ boundedness for operators in the functional calculus of certain perturbed first order differential operators of Dirac type for with $ple q$ in a certain range o
We study whether in the setting of the Deift-Zhou nonlinear steepest descent method one can avoid solving local parametrix problems explicitly, while still obtaining asymptotic results. We show that this can be done, provided an a priori estimate for