ﻻ يوجد ملخص باللغة العربية
We study the moduli spaces of flat SL(r)- and PGL(r)-connections, or equivalently, Higgs bundles, on an algebraic curve. These spaces are noncompact Calabi-Yau orbifolds; we show that they can be regarded as mirror partners in two different senses. First, they satisfy the requirements laid down by Strominger-Yau-Zaslow (SYZ), in a suitably general sense involving a B-field or flat unitary gerbe. To show this, we use their hyperkahler structures and Hitchins integrable systems. Second, their Hodge numbers, again in a suitably general sense, are equal. These spaces provide significant evidence in support of SYZ. Moreover, they throw a bridge from mirror symmetry to the duality theory of Lie groups and, more broadly, to the geometric Langlands program.
By normalizing the space of commuting pairs of elements in a reductive Lie group G, and the corresponding space for the Langlands dual group, we construct pairs of hyperkahler orbifolds which satisfy the conditions to be mirror partners in the sense
We prove that the Hilbert scheme of $k$ points on $mathbb{C}^2$ (Hilb$^k[mathbb{C}^2]$) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivarian
A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers - connections on the projective line with extra structure. In this paper, we describe
We find an agreement of equivariant indices of semi-classical homomorphisms between pairwise mirror branes in the GL(2) Higgs moduli space on a Riemann surface. On one side we have the components of the Lagrangian brane of U(1,1) Higgs bundles whose
Here we survey questions and results on the Hodge theory of hyperkaehler quotients, motivated by certain S-duality considerations in string theory. The problems include L^2 harmonic forms, Betti numbers and mixed Hodge structures on the moduli spaces