ﻻ يوجد ملخص باللغة العربية
In this short note, we give a sketch of a new proof of the exponential contraction of the Feigenbaum renormalization operator in the hybrid class of the Feigenbaum fixed point. The proof uses the non existence of invariant line fields in the Feigenbaum tower (C. McMullen), the topological convergence (D. Sullivan), and a new infinitesimal argument, different from previous methods by C. McMullen and M. Lyubich. The method is very general: for instance, it can be used in the classical renormalization operator and in the Fibonacci renormalization operator.
We show that the Julia set of the Feigenbaum polynomial has Hausdorff dimension less than~2 (and consequently it has zero Lebesgue measure). This solves a long-standing open question.
We study the dynamics of towers defined by fixed points of renormalization for Feigenbaum polynomials in the complex plane with varying order ell of the critical point. It is known that the measure of the Julia set of the Feigenbaum polynomial is pos
Continuous groups with antilinear operations of the form $G+a_0G$, where $G$ denotes a linear Lie group, and $a_0$ is an antilinear operation which fulfills the condition $a^2_0=pm 1$, were defined and their matrix algebras were investigated in cite{
Generally-unbounded infinitesimal generators are studied in the context of operator topology. Beginning with the definition of seminorm, the concept of locally convex topological vector space is introduced as well as the concept of Fr{e}chet space. T
We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a co