ﻻ يوجد ملخص باللغة العربية
Let ${rm F}$ be a rank-2 semi-stable sheaf on the projective plane, with Chern classes $c_{1}=0,c_{2}=n$. The curve $beta_{rm F}$ of jumping lines of ${rm F}$, in the dual projective plane, has degree $n$. Let ${rm M}_{n}$ be the moduli space of equivalence classes of semi-stables sheaves of rank 2 and Chern classes $(0,n)$ on the projective plane and ${cal C}_{n}$ be the projective space of curves of degree $n$ in the dual projective plane. The Barth morphism $$beta: {rm M}_{n}longrightarrow{cal C}_{n}$$ associates the point $beta_{rm F}$ to the class of the sheaf ${rm F}$. We prove that this morphism is generically injective for $ngeq 4.$ The image of $beta$ is a closed subvariety of dimension $4n-3$ of ${cal C}_{n}$; as a consequence of our result, the degree of this image is given by the Donaldson number of index $4n-3$ of the projective plane.
On the rank of Jacobians over function fields.} Let $f:mathcal{X}to C$ be a projective surface fibered over a curve and defined over a number field $k$. We give an interpretation of the rank of the Mordell-Weil group over $k(C)$ of the jacobian of th
Consider the ring of holomorphic function germs in $C^n$ and denote by $M$ the maximal ideal of this ring. For any a holomorphic function germ $f$ with an isolated critical point, the finite determinacy theorem (Mather-Tougeron) asserts that there ex
The structure of anticyclic operad on the Dendriform operad defines in particular a matrix of finite order acting on the vector space spanned by planar binary trees. We compute its characteristic polynomial and propose a (compatible) conjecture for t
In this short note, I explain how the non-degeneracy condition of the KAM can be bypassed. The first version of the note has been submitted for publication back in 2010 and this version in 2012.
Let X be a complex analytic manifold and D subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {c