Asymptotics of Best-Packing on Rectifiable Sets


الملخص بالإنكليزية

We investigate the asymptotic behavior, as $N$ grows, of the largest minimal pairwise distance of $N$ points restricted to an arbitrary compact rectifiable set embedded in Euclidean space, and we find the limit distribution of such optimal configurations. For this purpose, we compare best-packing configurations with minimal Riesz $s$-energy configurations and determine the $s$-th root asymptotic behavior (as $sto infty)$ of the minimal energy constants. We show that the upper and the lower dimension of a set defined through the Riesz energy or best-packing coincides with the upper and lower Minkowski dimension, respectively. For certain sets in ${rm {bf R}}^d$ of integer Hausdorff dimension, we show that the limiting behavior of the best-packing distance as well as the minimal $s$-energy for large $s$ is different for different subsequences of the cardinalities of the configurations.

تحميل البحث