ﻻ يوجد ملخص باللغة العربية
We consider the general physical situation of a quantum system $H_0$ interacting with a chain of exterior systems $bigotimes_N H$, one after the other, during a small interval of time $h$ and following some Hamiltonian $H$ on $H_0 otimes H$. We discuss the passage to the limit to continuous interactions ($h to 0$) in a setup which allows to compute the limit of this Hamiltonian evolution in a single state space: a continuous field of exterior systems $otimes_{R} H$. Surprisingly, the passage to the limit shows the necessity for 3 different time scales in $H$. The limit evolution equation is shown to spontaneously produce quantum noises terms: we obtain a quantum Langevin equation as limit of the Hamiltonian evolution. For the very first time, these quantum Langevin equations are obtained as the effective limit from repeated to continuous interactions and not only as a model. These results justify the usual quantum Langevin equations considered in continual quantum measurement or in quantum optics. We show that the three time scales correspond to the normal regime, the weak coupling limit and the low density limit. Our approach allows to consider these two physical limits altogether for the first time. Their combination produces an effective Hamiltonian on the small system, which had never been described before. We apply these results to give an Hamiltonian description of the von Neumann measurement. We also consider the approximation of continuous time quantum master equations by discrete time ones. In particular we show how any Lindblad generator is obtained as the limit of completely positive maps.
The concept of a classical player, corresponding to a classical random variable, is extended to include quantum random variables in the form of self adjoint operators on infinite dimensional Hilbert space. A quantum version of Von Neumanns Minimax th
We consider a non-interacting bipartite quantum system $mathcal H_S^Aotimesmathcal H_S^B$ undergoing repeated quantum interactions with an environment modeled by a chain of independant quantum systems interacting one after the other with the bipartit
We study entropy production (EP) in processes involving repeated quantum measurements of finite quantum systems. Adopting a dynamical system approach, we develop a thermodynamic formalism for the EP and study fine aspects of irreversibility related t
The Quantum Symmetric Simple Exclusion Process (Q-SSEP) is a model for quantum stochastic dynamics of fermions hopping along the edges of a graph with Brownian noisy amplitudes and driven out-of-equilibrium by injection-extraction processes at a few
We consider a repeated quantum interaction model describing a small system $Hh_S$ in interaction with each one of the identical copies of the chain $bigotimes_{N^*}C^{n+1}$, modeling a heat bath, one after another during the same short time intervals