Finite N Matrix Models of Noncommutative Gauge Theory


الملخص بالإنكليزية

We describe a unitary matrix model which is constructed from discrete analogs of the usual projective modules over the noncommutative torus and use it to construct a lattice version of noncommutative gauge theory. The model is a discretization of the noncommutative gauge theories that arise from toroidal compactification of Matrix theory and it includes a recent proposal for a non-perturbative definition of noncommutative Yang-Mills theory in terms of twisted reduced models. The model is interpreted as a manifestly star-gauge invariant lattice formulation of noncommutative gauge theory, which reduces to ordinary Wilson lattice gauge theory for particular choices of parameters. It possesses a continuum limit which maintains both finite spacetime volume and finite noncommutativity scale. We show how the matrix model may be used for studying the properties of noncommutative gauge theory.

تحميل البحث