ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on ``Singularities in axially symmetric solutions of Einstein-Yang Mills and related theories, by Ludger Hannibal, [hep-th/9903063]

89   0   0.0 ( 0 )
 نشر من قبل Dr. Burkhard Kleihaus
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We point out that the statements in [hep-th/9903063] concerning the regularity of static axially symmetric solutions in Yang-Mills-dilaton (YMD) [1] and Einstein-Yang-Mills(-dilaton) (EYMD) theory [2,3] are incorrect, and that the non-singular local gauge potential of the YMD solutions [4] is twice differentiable.



قيم البحث

اقرأ أيضاً

In [hep-th/9907222] Hannibal claims to exclude the existence of particle-like static axially symmetric non-abelian solutions in SU(2) Einstein-Yang-Mills-dilaton theory. His argument is based on the asymptotic behaviour of such solutions. Here we dis prove his claim by giving explicitly the asymptotic form of non-abelian solutions with winding number n=2.
We discuss the asymptotic form of the static axially symmetric, globally regular and black hole solutions, obtained recently in Einstein-Yang-Mills and Einstein-Yang-Mills-dilaton theory.
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions. As their defining property, these theories admit the action of a global or local symmetry group t hat is (i) simple, and (ii) acts irreducibly on all the vector fields of the theory, including the ``graviphoton. Restricting ourselves to the theories that originate from five dimensions via dimensional reduction, we find that the generic Jordan family of MESGTs with the scalar manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four dimensions with the unifying global symmetry group SO(2,n). Of these theories only one can be gauged so as to obtain a unified YMESGT with the gauge group SO(2,1). Three of the four magical supergravity theories defined by simple Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions. Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family and the theories whose scalar manifolds are homogeneous but not symmetric do not lead to unified MESGTs in four dimensions. The three infinite families of unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras, whose scalar manifolds are non-homogeneous, do not lead directly to unified MESGTs in four dimensions under dimensional reduction. However, since their manifolds are non-homogeneous we are not able to completely rule out the existence of symplectic sections in which these theories become unified in four dimensions.
We discuss the relation between spacetime diffeomorphisms and gauge transformations in theories of the Yang-Mills type coupled with Einsteins General Relativity. We show that local symmetries of the Hamiltonian and Lagrangian formalisms of these gene rally covariant gauge systems are equivalent when gauge transformations are required to induce transformations which are projectable under the Legendre map. Although pure Yang-Mills gauge transformations are projectable by themselves, diffeomorphisms are not. Instead the projectable symmetry group arises from infinitesimal diffeomorphism-inducing transformations which must depend on the lapse function and shift vector of the spacetime metric plus associated gauge transformations. Our results are generalizations of earlier results by ourselves and by Salisbury and Sundermeyer.
We consider the partition function and correlation functions in the bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. In the supersymmetric case, we show that the partition function converges when $D=4,6$ and 1 0, and that correlation functions of degree $k< k_c=2(D-3)$ are convergent independently of the group. In the bosonic case we show that the partition function is convergent when $D geq D_c$, and that correlation functions of degree $k < k_c$ are convergent, and calculate $D_c$ and $k_c$ for each group, thus extending our previous results for SU(N). As a special case these results establish that the partition function and a set of correlation functions in the IKKT IIB string matrix model are convergent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا