ﻻ يوجد ملخص باللغة العربية
We develop a geometrical structure of the manifolds $Gamma$ and $hatGamma$ associated respectively to the gauge symmetry and to the BRST symmetry. Then, we show that ($hatGamma,hatzeta,Gamma$), where $hatzeta$ is the group of BRST transformations, is endowed with the structure of a principle fiber bundle over the base manifold $Gamma$. Furthermore, in this geometrical set up due to the nilpotency of the BRST operator, we prove that the effective action of a gauge theory is a BRST-exact term up to the classical action. Then, we conclude that the effective action where only the gauge symmetry is fixed, is cohomologically equivalent to the action where the gauge and the BRST symmetries are fixed.
I review results from recent investigations of anomalies in fermion--Yang Mills systems in which basic notions from noncommutative geometry (NCG) where found to naturally appear. The general theme is that derivations of anomalies from quantum field t
It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry. In this paper we present an explicit proof for the case of the torus and the sphere.
It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry.
The Connes and Lott reformulation of the strong and electroweak model represents a promising application of noncommutative geometry. In this scheme the Higgs field naturally appears in the theory as a particular `gauge boson, connected to the discret
We propose a formulation of d-dimensional SU(N) Yang-Mills theories on a d+2-dimensional space with the extra two dimensions forming a surface with non-commutative geometry. This equivalence is valid in any finite order in the 1/N expansion.