N=1, d=4 superconformal group is studied and its representations are discussed. Under superconformal transformations, left invariant derivatives and some class of superfields, including supercurrents, are shown to follow these representations. In other words, these superfields are quasi-primary by analogy with two dimensional conformal field theory. Based on these results, we find the general forms of the two-point and the three-point correlation functions of the quasi-primary superfields in a group theoretical way. In particular, we show that the two-point function of the supercurrent is unique up to a constant and the general form of the three-point function of the supercurrent has two free parameters.